Step of Proof: pos_mul_arg_bounds
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
pos
mul
arg
bounds
:
1.
a
:
2.
b
:
3. (
a
*
b
) > 0
((
a
> 0) & (
b
> 0))
((
a
< 0) & (
b
< 0))
latex
by ((((InstLemma `int_trichot` [
a
;0])
CollapseTHENM (GenExRepD))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
4.
a
< 0
C1:
((
a
> 0) & (
b
> 0))
((
a
< 0) & (
b
< 0))
C
2
:
C2:
4.
a
= 0
C2:
((
a
> 0) & (
b
> 0))
((
a
< 0) & (
b
< 0))
C
3
:
C3:
4.
a
> 0
C3:
((
a
> 0) & (
b
> 0))
((
a
< 0) & (
b
< 0))
C
.
Definitions
t
T
,
x
:
A
.
B
(
x
)
,
P
Q
Lemmas
int
trichot
origin